The existence of optimal control for continuous-time Markov decision processes in random environments

Jinghai Shao

Center for Applied Mathematics, Tianjin University

July 12, 2019

Jinghai Shao (Tianjin University) [Optimal control in random environments](#page-29-0) July 12, 2019 1 / 30

Contents

- **1** Continuous-time Markov Decision Processes (CTMDP)
	- \blacktriangleright Background
	- \blacktriangleright Framework
- **2** Optimal Markov control for CTMDP in random environments
	- \blacktriangleright Main results
	- \blacktriangleright Key steps in the arguments
- **3** Optimal Markov control for CTMDP with delay

Contents

[Continuous-time Markov Decision Processes \(CTMDP\)](#page-2-0)

- **•** [Background](#page-3-0)
- **•** [Framework](#page-9-0)

2 [Optimal Markov control for CTMDP in random environments](#page-14-0)

- **[Main results](#page-15-0)**
- • [Key points in the arguments](#page-19-0)

[Optimal control for CTMDP with delay](#page-22-0)

- CTMDPs have been extensively studied and widely applied in various application fields such as telecommunication, queueing systems, population processes, epidemiology, and so on.
- As an illustrative example, consider the controlled queueing systems:

Control Model

Consider the state space $S = \{1, 2, ...\}$, on which there exists a continuoustime Markov chain (Λ_t) with

$$
(q_{ij}(a)) \quad \text{for } a \in U, \text{ action space.}
$$

Assume

$$
U \subset \mathbb{R}^k, \text{ compact}; \sum_{j \in \mathcal{S}} q_{ij}(a) = 0, \quad \forall i \in \mathcal{S}, \ a \in U;
$$

$$
\sup_{a \in U} \sup_{i \in \mathcal{S}} q_i(a) < \infty.
$$

4 D F

- 4 三 ト 4

 QQ

For example, choose appropriate control policy to minimize the cost

$$
\begin{aligned} \text{\textcolor{red}{\bullet}} \ \ \text{finite-horizon} \ \ \text{expected cost:} \\ V_T(i,\pi) := \mathbb{E}\Big[\int_0^T c(\Lambda_t,\pi_t)\text{d}t\Big], \text{ where } T > 0. \end{aligned}
$$

 \bullet infinite-horizon expected discounted cost:

$$
V(i,\pi):=\mathbb{E}\Big[\int_0^\infty \mathrm{e}^{-\lambda t}c(\Lambda_t,\pi_t)\mathrm{d} t\Big],\ \text{where}\ \lambda>0,\ \text{discount factor}.
$$

Randomized Markov policies: A randomized Markov policy is a real-valued function $\pi_t(C|i)$ that satisfies the following conditions:

(i) For all $i \in S$ and $C \in \mathscr{B}(U)$, the mapping $t \mapsto \pi_t(C|i)$ is measurable; (ii) For all $i \in S$, $t \geq 0$, $C \mapsto \pi_t(C|i)$ is a probability measure on $\mathscr{B}(U)$. stationary : if $\pi_t(C|i) \equiv \pi(C|i)$. deterministic : if $\pi_t(C|i) = \delta_{u_t}(C|i)$, Dirac measure. $\bigoplus \Pi$: the set of all randomized Markov policies.

- ∗ X.P. Guo, Hernandez-Lerma, Springer-Verlag, Berlin, 2009.
- ∗ X.P. Guo, X. Huang, Y. Huang, Finite-horizon optimality for CTMDPs with unbounded transition rates, Adv. Appl. Prob. 2015.
- ∗ X.P. Guo, U. Rieder, Average optimality for CTMDPs in Polish spaces, Ann. Appl. Probab. 2006.
- ∗ A. Piunovskiy, Y. Zhang, Discounted CTMDPs with unbounded rates: the convex analytic approach, SIAM J. Control Optim. 2011.

An existing method

Consider

$$
J_{\lambda}(i,\pi) := \mathbb{E}\Big[\int_0^{\infty} e^{-\lambda t} c(\Lambda_t, \pi_t) dt\Big],
$$

and the corresponding value function

$$
J^*_\lambda(i) := \inf_{\pi \in \Pi} J_\lambda(i, \pi).
$$

Key point: The function J^*_λ satisfies the HJB equation

$$
J^*_{\lambda}(i) = \inf_{a \in U} \left\{ \frac{c(i,a)}{\lambda + q_i(a)} + \frac{1}{\lambda + q_i(a)} \sum_{j \neq i} J^*_{\lambda}(j) q_{ij}(a) \right\}, \quad i \in \mathcal{S}.
$$

4 D F

 \rightarrow \rightarrow \rightarrow

Let

$$
\varphi_{ij}^{(n)}(a) := \begin{cases} \frac{\delta_{ij}}{\lambda + q_i(f)} & n = 1, \\ \frac{1}{\lambda + q_i(f)} [\delta_{ij} + \sum_{k \neq i} q_{ik}(f) \varphi_{kj}^{(n-1)}(f)] & n = 2. \end{cases}
$$

Then

$$
J_{\lambda}(i, f) = \sum_{j \in \mathcal{S}} \int_0^{\infty} e^{-\lambda t} c(j, f) P_f(0, i, t, j) dt
$$

=
$$
\sum_{j \in \mathcal{S}} c(j, f) \left[\lim_{n \to \infty} \varphi_{ij}^{(n)}(f) \right].
$$

Jinghai Shao (Tianjin University) [Optimal control in random environments](#page-0-0) July 12, 2019 9/30

 2990

K ロンス 御 > スミンス ミンニ ミ

Framework

Let us consider further a diffusion process satisfying SDE:

$$
dX_t = b(X_t, \Lambda_t)dt + \sigma(X_t, \Lambda_t)dB_t,
$$

where (B_t) is a d -dimension B.M., $b:\mathbb{R}^d {\times} \mathcal{S} \to \mathbb{R}^d$, and $\sigma: \mathbb{R}^d {\times} \mathcal{S} \to \mathbb{R}^{d {\times} d}$. The optimal control problem:

$$
\inf_{\Pi} \mathbb{E}\Big[\int_0^T f(t, X_t, \Lambda_t, \mu_t) dt + g(X_T, \Lambda_T)\Big],
$$

where Π is the set of admissible control policies which will be given later.

Some notations

1 Let $\psi : [0, T] \to [0, \infty)$ be an increasing function such that

$$
\lim_{r \to 0} \psi(r) = 0 \qquad \forall \, r \in [0, T].
$$

- $\mathbf{P} \ \mathscr{P}(U)$: all the probab. measures over U , endowed with the L^1 -Wasserstein distance, becoming a Polish space.
- \odot $\mathcal{D}([0,T];\mathscr{P}(U))$: measurable maps $[0,T] \mapsto (\mathscr{P}(U), W_1)$, càdlàg.
- \bullet Endow $\mathcal{D}([0,T];\mathscr{P}(U))$ with the pseudopath topology, which makes it being a Polish space.
- **5** For $\mu : [0, T] \to \mathscr{P}(U)$ in $\mathcal{D}([0, T]; \mathscr{P}(U))$, put

$$
w_{\mu}([a, b)) = \sup \{W_1(\mu_t, \mu_s); s, t \in [a, b)\}, a, b \in [0, T], a < b;
$$

$$
w_{\mu}''(\delta) = \sup \min \{W_1(\mu_t, \mu_{t_1}), W_1(\mu_t, \mu_{t_2})\},
$$

where the supremum is taken over t_1 , t_1 , and t_2 satisfying

$$
t_1 \leq t \leq t_2, \qquad t_2 - t_{1 \text{\tiny $\left\langle \bigcirc \right. \right.}^{\beta} \circ \text{\tiny $\left\langle \bigcirc \right. \left. \left. \bigcirc \right. \left. \left. \bigcirc \right. \left. \left. \bigcirc \right. \
$$

The process (X_t) is determined by the following SDE:

$$
dX_t = b(X_t, \Lambda_t)dt + \sigma(X_t, \Lambda_t)dB_t,
$$
\n(1)

where (B_t) is a Brownian motion; (Λ_t) is a continuous-time Markov process on S associated with the q-pair $(q_i(u))$, $q_{ij}(u)$) satisfying

$$
\mathbb{P}(\Lambda_{t+\delta}=j|\Lambda_t=i,\mu_t=\mu)=\begin{cases} q_{ij}(\mu)\delta+o(\delta) & i \neq j, \\ 1-q_i(\mu)\delta+o(\delta), & i=j, \end{cases}
$$
 (2)

provided $\delta > 0$. The decision-maker still tries to minimize the cost through controlling the transition rates of the Markov chain (Λ_t) , but now the cost function may depend on the diffusion process (X_t) .

Definition

A ψ -relaxed control is a term $\alpha=(\Omega,\mathscr{F},\mathscr{F}_t,\mathbb{P},B_t,X_t,\Lambda_t,\mu_t,s,x,i)$ such that

- (1) $(s, x, i) \in [0, T] \times \mathbb{R}^d \times S;$
- (2) $(\Omega, \mathscr{F}, \mathbb{P})$ is a probability space with the filtration $\{\mathscr{F}_t\}_{t\in [0,T]};$
- (3) (B_t) is a d-dim B.M. on $(\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{P})$, and (X_t, Λ_t) is a stochastic process on $\mathbb{R}^d\times\mathcal{S}$ satisfying (1) and (2) with $X_s=x$, $\Lambda_s=i;$
- (4) $\mu_t \in \mathscr{P}(U)$ is adapted to the σ -field generated by Λ_t , $t \mapsto \mu_t$ is in $\mathcal{D}([0,T];\mathscr{P}(U))$ almost surely, and for every $\it i' \in \mathcal{S}$ the curve $t \mapsto$ $\nu_t(\,\cdot,i'):=\mu_t(\,\cdot\,|\Lambda_t=i')$ satisfies

$$
w''_{\nu}(\delta) \le \psi(\delta), \quad \delta \in (0, T];
$$

 $-$ The collection of all ψ -relaxed control with initial value (s, x, i) is denoted by $\Pi_{s,ri}$.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Actually, the randomized policy can be viewed as a Markov feedback control.

$$
\mu_t(C) = \sum_{i \in S} \pi_t(C|i) \mathbf{1}_{\Lambda_t = i}
$$

= $\pi_t(C|\Lambda_t)$, $t \ge 0$.

4 日下

→ < 3

Contents

1 [Continuous-time Markov Decision Processes \(CTMDP\)](#page-2-0)

- **•** [Background](#page-3-0)
- **•** [Framework](#page-9-0)

2 [Optimal Markov control for CTMDP in random environments](#page-14-0)

- [Main results](#page-15-0)
- • [Key points in the arguments](#page-19-0)

[Optimal control for CTMDP with delay](#page-22-0)

Assumptions

(H1) $U \subset \mathbb{R}^k$ is a compact set for some $k \in \mathbb{N}$. $(H2) \; \forall u \in U$, $(q_{ij}(u))$ is conservative. $M := \sup \sup q_i(u) < \infty$. u∈U i∈S (H3) $\forall i, j \in S$, $u \mapsto q_{ij}(u)$ is continuous on U.

(H4) \exists a compact function $\Phi : \mathcal{S} \to [1,\infty)$, a compact set $B_0 \in \mathscr{B}(\mathcal{S})$, constants $\lambda > 0$ and $\kappa_0 < \infty$ such that

$$
Q_u \Phi(i) := \sum q_{ij}(u) \Phi(j) \leq \lambda \Phi(i) + \kappa_0 \mathbf{1}_{B_0}(i), \qquad i \in \mathcal{S}, \ u \in U.
$$

(H5) \exists a constant $C_1 > 0$ such that

$$
|b(x,i)-b(y,i)|^2 + ||\sigma(x,i)-\sigma(y,i)||^2 \le C_1|x-y|^2, \quad x,y \in \mathbb{R}^d, \ i \in \mathcal{S},
$$

where $|x|^2 = \sum_{k=1}^d x_k^2$, $\|\sigma\|^2 = \text{tr}(\sigma \sigma')$. (H6[\)](#page-0-0) ∃ $C_2 > 0$ $C_2 > 0$ $C_2 > 0$ such that $|b(x, i)|^2 + ||\sigma(x, i)||^2 \leq C_2(1+|x|^2)$ $|b(x, i)|^2 + ||\sigma(x, i)||^2 \leq C_2(1+|x|^2)$ [,](#page-0-0) $x \in \mathbb{R}^d, i \in \mathcal{S}$ $x \in \mathbb{R}^d, i \in \mathcal{S}$ $x \in \mathbb{R}^d, i \in \mathcal{S}$.

Theorem 1

Assume that (H1)-(H6) hold, and f, g are lower semi-continuous functions bounded from below. Then for every $s\in[0,T)$, $x\in\mathbb{R}^d$, $i\in\mathcal{S}$, there exists an optimal ψ -relaxed control $\alpha^* \in \widetilde{\Pi}_{s,x,i}$, i.e.

$$
V(s, x, i) = J(s, x, i, \alpha^*)
$$

=
$$
\inf_{\alpha \in \widetilde{\Pi}_{s, x, i}} \mathbb{E} \Big[\int_s^T f(t, X_t, \Lambda_t, \mu_t) dt + g(X_T, \Lambda_T) \Big].
$$

Theorem 2

Suppose (H1)-(H6) hold. Assume that f and g are continuous functions and there exists a positive constant C_3 such that

$$
|f(t, x, i, u) - f(t, x', i, u)| + |g(x, i) - g(x', i)| \le C_3 |x - x'|,
$$

$$
|f(t, x, i, u)| + |g(x, i)| \le C_3,
$$

for every $t\, \in\, [0,T],\; x,x' \, \in\, \mathbb{R}^d,\; i\, \in\, \mathcal{S}$ and $u\, \in\, U.$ Then $V(s,x,i)$ is continuous on $[0,T]\times\mathbb{R}^d\times\mathcal{S}.$

Theorem 3 (Dynamic programming principle)

Assume all the conditions of Theorem 2 are still valid. Then for $s < t < T$,

$$
V(s, x, i) = \inf \left\{ \mathbb{E}_{\alpha} \Big[\int_{s}^{t} f(r, X_{r}, \Lambda_{r}, \mu_{r}) dr + V(t, X_{t}, \Lambda_{t}) \Big]; \ \alpha \in \widetilde{\Pi}_{s, x, i} \right\}.
$$

 QQ

Key steps to prove Theorem 1

To simplify the proof, transform the relaxed controls into the canonical path space. Let

$$
\mathcal{U} = \{ \nu \in \mathcal{D}([0, T]; \mathscr{P}(U)); \ w''_{\nu}(\delta) \leq \psi(\delta) \}
$$

$$
\mathcal{Y} = C([0, T]; \mathbb{R}^d) \times \mathcal{D}([0, T]; \mathcal{S}) \times \mathcal{U}.
$$

Denote by $\mathcal{D}, \ \mathcal{U}$ the Borel measurable sets, and $\mathcal{D}_t, \ \mathcal{U}_t$ the σ -fields up to time t. Each ψ -relaxed control $\alpha = (\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{P}, B_t, X_t, \Lambda_t, \mu_t, s, x, i)$ can be transformed into $\mathcal Y$ via the map

$$
\Psi(\omega) = (X_t(\omega), \Lambda_t(\omega), \mu_t(\omega))_{t \in [0,T]},
$$

with $X_r := x, \Lambda_r := i, \mu_r := \mu_s, \forall r \in [0, s].$ We can use $R:=\mathbb{P}\circ \Psi^{-1}$ to represent the control α in canonical space $\mathcal{Y}.$

 QQ

Key steps to prove Theorem 1

Consider the nontrivial case $V(0, x, i) < \infty$, and $\exists (R_n)_{n\geq 1}$ such that

$$
\lim_{n \to \infty} J(0, x, i, R_n) = V(0, x, i).
$$
 (e1)

- \bullet Prove the tightness of the distributions of $(X_t)_{t\in[0,T]}$, $(\Lambda_t)_{t\in[0,T]}$ and $(\mu_t)_{t\in[0,T]}$ under the sequence of probab. measures R_n , $n\geq 1$.
	- − Taking a subsequence if necessary, using Skorokhod's representation theorem, \exists a probab. space $(\Omega', \mathscr{F}', \mathbb{P}')$ and $(X^{(n)}_t, \Lambda^{(n)}_t, \mu^{(n)}_t)_{t \in [0,T]}$ taking values in Y with the distribution R_n , such that

$$
(X^{(n)}_t, \Lambda^{(n)}_t, \mu^{(n)}_t)_{t \in [0,T]} \longrightarrow (X^{(0)}_t, \Lambda^{(0)}_t, \mu^{(0)}_t)_{t \in [0,T]}, \text{ a.s. } n \rightarrow \infty.
$$

Key steps to prove Theorem 1

 $\,$ $\,$ Prove that $(X_t^{(0)}$ $\alpha_t^{(0)}, \Lambda_t^{(0)}$ $_{t}^{\left(0\right) },\mu _{t}^{\left(0\right) }$ $t^{(0)}_t$) satisfies

$$
X_t^{(0)} = x + \int_0^t b(X_s^{(0)}, \Lambda_s^{(0)}) ds + \int_0^t \sigma(X_s^{(0)}, \Lambda_s^{(0)}) dB_s.
$$

$$
\mathbb{P}(\Lambda_{t+\delta}^{(0)}=j|\Lambda_t^{(0)}=i',\mu_t^{(0)}=\mu)=\begin{cases} q_{i'j}(\mu)\delta+o(\delta) & i'\neq j, \\ 1-q_{i'}(\mu)\delta+o(\delta), & i'=j. \end{cases}
$$

 \blacktriangleright $\mu_t^{(0)}$ is adapted to $\sigma(\Lambda_t^{(0)})$.

 $\bullet\;$ the control α^* associated with $(X_t^{(0)}$ $t^{(0)}, \Lambda_t^{(0)}$ $_t^{(0)}, \mu_t^{(0)}$ $\mathcal{L}_{t}^{(0)}$) is an optimal ψ -relaxed control.

HALL HER E MAG

Contents

1 [Continuous-time Markov Decision Processes \(CTMDP\)](#page-2-0)

- **•** [Background](#page-3-0)
- **•** [Framework](#page-9-0)

2 [Optimal Markov control for CTMDP in random environments](#page-14-0)

- **[Main results](#page-15-0)**
- • [Key points in the arguments](#page-19-0)

[Optimal control for CTMDP with delay](#page-22-0)

Let $\psi : [0, T] \to [0, \infty)$ be increasing, $\lim_{r \to 0} \psi(r) = 0$. For $r_0\in(0,T)$, define a shift operator $\theta_{r_0}:\mathcal{D}([0,T];\mathcal{S})\to\mathcal{D}([0,T];\mathcal{S})$ by

$$
(\theta_{r_0}\lambda)(t) = \lambda_{(t-r_0)\vee 0}, \quad t \in [0, T].
$$

Moreover, $\theta^k_{r_0}\lambda(t):=\lambda_{(t-kr_0)\vee 0}$ for $\lambda\in\mathcal{D}([0,T];\mathcal{S}),\ k\geq 0.$ $m \geq 1$ is a fixed integer. A functional $h : [0, T] \times \mathcal{S}^{m+1} \to \mathcal{P}(U)$ is said to be in the class Υ_{ψ} if for every $i_0, \ldots, i_m \in S$, $t \mapsto \tilde{\mu}(t) := h(t, i_0, \ldots, i_m)$ satisfies

$$
w_{\tilde{\mu}}([t_1, t_2)) \le \psi(|t_2 - t_1|), \quad t_1, t_2 \in [0, T].
$$

Definition: For $s \in [0, T)$ and $i \in S$, a history-dependent control is a term $\alpha=(\Lambda_t,\mu_t)$ such that

(1) (Λ_t) is an \mathscr{F}_t -adapted jumping process satisfying

$$
\mathbb{P}(\Lambda_{t+\delta}=j|\Lambda_t=i,\mu_t=\mu)=\begin{cases} q_{ij}(\mu)\delta+o(\delta), & \text{if } i\neq j, \\ 1+q_{ii}(\mu)\delta+o(\delta), & \text{otherwise,} \end{cases}
$$

with initial value $\Lambda_s = i$ for $s \in [0, T)$ and $i \in \mathcal{S}$.

(2) There exists $h \in \Upsilon_{\psi}$ such that

$$
\mu_t = h(t, \theta_{r_0}^0 \Lambda(t), \dots, \theta_{r_0}^m \Lambda(t)).
$$

The collection of all history-dependent α with initial value (s, i) is denoted by $\Pi_{s,i}$. Let $f:[0,T]\times\mathcal{S}\times\mathcal{P}(U)\to[0,\infty)$, $g:\mathcal{S}\to[0,\infty)$ be two lower semi-continuous functions. The expected cost for the history-dependent control $\alpha \in \Pi_{s,i}$ is defined by

$$
J(s, i, \alpha) = \mathbb{E}\Big[\int_s^T f(t, \Lambda_t, \mu_t) dt + g(\Lambda_T)\Big],
$$

and the value function is defined by

$$
V(s, i) = \inf_{\alpha \in \Pi_{s,i}} J(s, i, \alpha).
$$

A history-dependent control $\alpha^*\in \Pi_{s,i}$ is said to be *optimal*, if

$$
V(s, i) = J(s, i, \alpha^*).
$$

- $\mathbf{1}_{\mu} = h(\Lambda_t)$ for some $h : \mathcal{S} \to \mathcal{P}(U)$. In this situation, α is corresponding to the stationary randomized Markov policy studied by many works.
- 2 $\mu_t = h(\Lambda_{(t-r_0)\vee 0})$ for some $h: \mathcal{S} \to \mathscr{P}(U).$ Now the control policies are purely determined by the jumping process with a positive delay. This kind of controls is very natural to be used in the realistic application.

Assumptions:

- $\hbox{(A1)} \ \mu \mapsto q_{ij}(\mu)$ is continuous $\forall \ i, \ j \in \mathcal{S}$, and $M := \sup \ \ \sup \ \ q_i(\mu) < \infty.$ i∈S μ ∈P (U)
- (A2) There exists a compact function $\Phi : \mathcal{S} \to [1,\infty)$, a compact set $B_0 \subset$ S, contants $\lambda_0 > 0$ and $\kappa_0 > 0$ such that

$$
Q_{\mu}\Phi(i) := \sum_{j\neq i} q_{ij}(\mu) (\Phi(j) - \Phi(i)) \leq \lambda_0 \Phi(i) + \kappa_0 \mathbf{1}_{B_0}(i).
$$

(A3) There exists a $K \in \mathbb{N}$ such that for every $i \in \mathcal{S}$ and $\mu \in \mathscr{P}(U)$, $q_{ij}(\mu) = 0$, if $|j - i| > K$.

Theorem 4

Assume (A1)-(A3) hold. Then for every $s \in [0, T)$, $i \in S$, there exists an optimal control $\alpha^* \in \Pi_{s,i}$.

X.P. Guo, X.X. Huang, Y.H. Huang, Adv. Appl. Prob. 2015.

 QQ

Further work

Consider the following SDE:

$$
dX_t = b(X_t, \Lambda_t, \mu_t)dt + \sigma(X_t, \Lambda_t, \mu_t)dB_t,
$$

where $b:\R^d\times\mathcal{S}\times\mathscr{P}(U)\to\R^d$, $\sigma:\R^d\times\mathcal{S}\times\mathscr{P}(U)\to\R^{d\times d}$, and $(B_t)_{t\geq 0}$ is a d-dimensional \mathscr{F}_t -Brownian motion. Here $(\Lambda_t)_{t>0}$ is a continuous-time jumping process on S satisfying

$$
\mathbb{P}(\Lambda_{t+\delta}=j|\Lambda_t=i,\ X_t=x,\nu_t=\nu)=\begin{cases} q_{ij}(x,\nu)\delta+o(\delta), & \text{if } j\neq i, \\ 1+q_{ii}(x,\nu)\delta+o(\delta), & \text{otherwise,} \end{cases}
$$

provided $\delta > 0$ for every $x \in \mathbb{R}^d$, $\nu \in \mathscr{P}(U)$, $i, \, j \in \mathcal{S}$.

 QQ

Thank You For Your Attention !

EMAIL:shaojh@tju.edu.cr

O

 \overline{a}

ō

ō

 \overline{O}

ō

Jinghai Shao (Tianjin University) [Optimal control in random environments](#page-0-0) July 12, 2019 30 / 30

۵ о

O

চ