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CTMDPs have been extensively studied and widely applied in various

application fields such as telecommunication, queueing systems, popu-

lation processes, epidemiology, and so on.

As an illustrative example, consider the controlled queueing systems:
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Control Model

Consider the state space S = {1, 2, . . .}, on which there exists a continuous-

time Markov chain (Λt) with

(qij(a)) for a ∈ U , action space.

Assume

U ⊂ Rk, compact;
∑
j∈S

qij(a) = 0, ∀i ∈ S, a ∈ U ;

sup
a∈U

sup
i∈S

qi(a) <∞.

Jinghai Shao (Tianjin University) Optimal control in random environments July 12, 2019 5 / 30



For example, choose appropriate control policy to minimize the cost

finite-horizon expected cost:

VT (i, π) := E
[ ∫ T

0
c(Λt, πt)dt

]
, where T > 0.

infinite-horizon expected discounted cost:

V (i, π) := E
[ ∫ ∞

0
e−λtc(Λt, πt)dt

]
, where λ > 0, discount factor.

Randomized Markov policies: A randomized Markov policy is a real-valued

function πt(C|i) that satisfies the following conditions:

(i) For all i ∈ S and C ∈ B(U), the mapping t 7→ πt(C|i) is measurable;

(ii) For all i ∈ S, t ≥ 0, C 7→ πt(C|i) is a probability measure on B(U).

stationary : if πt(C|i) ≡ π(C|i).

deterministic : if πt(C|i) = δut(C|i), Dirac measure.

♣ Π : the set of all randomized Markov policies.

Jinghai Shao (Tianjin University) Optimal control in random environments July 12, 2019 6 / 30



∗ X.P. Guo, Hernandez-Lerma, Springer-Verlag, Berlin, 2009.

∗ X.P. Guo, X. Huang, Y. Huang, Finite-horizon optimality for CTMDPs

with unbounded transition rates, Adv. Appl. Prob. 2015.

∗ X.P. Guo, U. Rieder, Average optimality for CTMDPs in Polish spaces,

Ann. Appl. Probab. 2006.

∗ A. Piunovskiy, Y. Zhang, Discounted CTMDPs with unbounded rates:

the convex analytic approach, SIAM J. Control Optim. 2011.

Jinghai Shao (Tianjin University) Optimal control in random environments July 12, 2019 7 / 30



An existing method

Consider

Jλ(i, π) := E
[ ∫ ∞

0
e−λtc(Λt, πt)dt

]
,

and the corresponding value function

J∗λ(i) := inf
π∈Π

Jλ(i, π).

Key point: The function J∗λ satisfies the HJB equation

J∗λ(i) = inf
a∈U

{ c(i, a)

λ+ qi(a)
+

1

λ+ qi(a)

∑
j 6=i

J∗λ(j)qij(a)
}
, i ∈ S.
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Let

ϕ
(n)
ij (a) :=


δij

λ+qi(f) n = 1,

1
λ+qi(f)

[
δij +

∑
k 6=i qik(f)ϕ

(n−1)
kj (f)

]
n = 2.

Then

Jλ(i, f) =
∑
j∈S

∫ ∞
0

e−λtc(j, f)Pf (0, i, t, j)dt

=
∑
j∈S

c(j, f)
[

lim
n→∞

ϕ
(n)
ij (f)

]
.
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Framework

Let us consider further a diffusion process satisfying SDE:

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt,

where (Bt) is a d-dimension B.M., b : Rd×S → Rd, and σ : Rd×S → Rd×d.

The optimal control problem:

inf
Π

E
[ ∫ T

0
f(t,Xt,Λt, µt)dt+ g(XT ,ΛT )

]
,

where Π is the set of admissible control policies which will be given later.
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Some notations

1 Let ψ : [0, T ]→ [0,∞) be an increasing function such that

lim
r→0

ψ(r) = 0 ∀ r ∈ [0, T ].

2 P(U): all the probab. measures over U , endowed with the L1-

Wasserstein distance, becoming a Polish space.

3 D([0, T ]; P(U)): measurable maps [0, T ] 7→ (P(U),W1), càdlàg.

4 Endow D([0, T ]; P(U)) with the pseudopath topology, which makes it

being a Polish space.

5 For µ : [0, T ]→P(U) in D([0, T ]; P(U)), put

wµ([a, b)) = sup{W1(µt, µs); s, t ∈ [a, b)}, a, b ∈ [0, T ], a < b;

w′′µ(δ) = sup min
{
W1(µt, µt1),W1(µt, µt2)

}
,

where the supremum is taken over t1, t, and t2 satisfying

t1 ≤ t ≤ t2, t2 − t1 ≤ δ.
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The process (Xt) is determined by the following SDE:

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt, (1)

where (Bt) is a Brownian motion; (Λt) is a continuous-time Markov process

on S associated with the q-pair (qi(u)), qij(u)) satisfying

P(Λt+δ = j|Λt = i, µt = µ) =

qij(µ)δ + o(δ) i 6= j,

1− qi(µ)δ + o(δ), i = j,
(2)

provided δ > 0. The decision-maker still tries to minimize the cost through

controlling the transition rates of the Markov chain (Λt), but now the cost

function may depend on the diffusion process (Xt).
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Definition

A ψ-relaxed control is a term α = (Ω,F ,Ft,P, Bt, Xt,Λt, µt, s, x, i) such

that
(1) (s, x, i) ∈ [0, T ]× Rd × S;

(2) (Ω,F ,P) is a probability space with the filtration {Ft}t∈[0,T ];

(3) (Bt) is a d-dim B.M. on (Ω,F ,Ft,P), and (Xt,Λt) is a stochastic

process on Rd × S satisfying (1) and (2) with Xs = x, Λs = i;

(4) µt ∈ P(U) is adapted to the σ-field generated by Λt, t 7→ µt is in

D([0, T ];P(U)) almost surely, and for every i′ ∈ S the curve t 7→
νt( ·, i′ ) := µt( · |Λt = i′) satisfies

w′′ν(δ) ≤ ψ(δ), δ ∈ (0, T ];

− The collection of all ψ-relaxed control with initial value (s, x, i) is de-

noted by Π̃s,x,i.
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Actually, the randomized policy can be viewed as a Markov feedback control.

µt(C) =
∑
i∈S

πt(C|i)1Λt=i

= πt(C|Λt), t ≥ 0.
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Assumptions

(H1) U ⊂ Rk is a compact set for some k ∈ N.

(H2) ∀u ∈ U , (qij(u)) is conservative. M := sup
u∈U

sup
i∈S

qi(u) <∞.

(H3) ∀ i, j ∈ S, u 7→ qij(u) is continuous on U .

(H4) ∃ a compact function Φ : S → [1,∞), a compact set B0 ∈ B(S),

constants λ > 0 and κ0 <∞ such that

QuΦ(i) :=
∑

qij(u)Φ(j) ≤ λΦ(i) + κ01B0(i), i ∈ S, u ∈ U.

(H5) ∃ a constant C1 > 0 such that

|b(x, i)−b(y, i)|2+‖σ(x, i)−σ(y, i)‖2 ≤ C1|x−y|2, x, y ∈ Rd, i ∈ S,

where |x|2 =
∑d

k=1 x
2
k, ‖σ‖2 = tr(σσ′).

(H6) ∃ C2 > 0 such that |b(x, i)|2+‖σ(x, i)‖2 ≤ C2(1+|x|2), x ∈ Rd, i ∈ S.
Jinghai Shao (Tianjin University) Optimal control in random environments July 12, 2019 16 / 30



Theorem 1

Assume that (H1)-(H6) hold, and f , g are lower semi-continuous functions

bounded from below. Then for every s ∈ [0, T ), x ∈ Rd, i ∈ S, there exists

an optimal ψ-relaxed control α∗ ∈ Π̃s,x,i, i.e.

V (s, x, i) = J(s, x, i, α∗)

= inf
α∈Π̃s,x,i

E
[ ∫ T

s
f(t,Xt,Λt, µt)dt+ g(XT ,ΛT )

]
.
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Theorem 2

Suppose (H1)-(H6) hold. Assume that f and g are continuous functions

and there exists a positive constant C3 such that

|f(t, x, i, u)−f(t, x′, i, u)|+ |g(x, i)− g(x′, i)| ≤ C3|x−x′|,

|f(t, x, i, u)|+ |g(x, i)| ≤ C3,

for every t ∈ [0, T ], x, x′ ∈ Rd, i ∈ S and u ∈ U . Then V (s, x, i) is

continuous on [0, T ]× Rd × S.
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Theorem 3 (Dynamic programming principle)

Assume all the conditions of Theorem 2 are still valid. Then for s < t < T ,

V (s, x, i) = inf
{
Eα
[ ∫ t

s
f(r,Xr,Λr, µr)dr + V (t,Xt,Λt)

]
; α ∈ Π̃s,x,i

}
.
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Key steps to prove Theorem 1

To simplify the proof, transform the relaxed controls into the canonical path

space. Let

U = {ν ∈ D([0, T ]; P(U)); w′′ν(δ) ≤ ψ(δ)}

Y = C([0, T ];Rd)×D([0, T ];S)× U .

Denote by D̃, Ũ the Borel measurable sets, and D̃t, Ũt the σ-fields up to

time t. Each ψ-relaxed control α = (Ω,F ,Ft,P, Bt, Xt,Λt, µt, s, x, i) can

be transformed into Y via the map

Ψ(ω) = (Xt(ω),Λt(ω), µt(ω))t∈[0,T ],

with Xr := x,Λr := i, µr := µs, ∀r ∈ [0, s].

We can use R := P ◦Ψ−1 to represent the control α in canonical space Y.
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Key steps to prove Theorem 1

Consider the nontrivial case V (0, x, i) <∞, and ∃ (Rn)n≥1 such that

lim
n→∞

J(0, x, i, Rn) = V (0, x, i). (e1)

1 Prove the tightness of the distributions of (Xt)t∈[0,T ], (Λt)t∈[0,T ] and

(µt)t∈[0,T ] under the sequence of probab. measures Rn, n ≥ 1.

− Taking a subsequence if necessary, using Skorokhod’s representation the-

orem, ∃ a probab. space (Ω′,F ′,P′) and (X
(n)
t ,Λ

(n)
t , µ

(n)
t )t∈[0,T ] taking

values in Y with the distribution Rn, such that

(X
(n)
t ,Λ

(n)
t , µ

(n)
t )t∈[0,T ] −→ (X

(0)
t ,Λ

(0)
t , µ

(0)
t )t∈[0,T ], a.s. n→∞.
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Key steps to prove Theorem 1

2 Prove that (X
(0)
t ,Λ

(0)
t , µ

(0)
t ) satisfies

I X
(0)
t = x+

∫ t

0

b(X(0)
s ,Λ(0)

s )ds+

∫ t

0

σ(X(0)
s ,Λ(0)

s )dBs.

I

P(Λ
(0)
t+δ = j|Λ(0)

t = i′, µ
(0)
t = µ) =

qi′j(µ)δ + o(δ) i′ 6= j,

1− qi′(µ)δ + o(δ), i′ = j.

I µ
(0)
t is adapted to σ(Λ

(0)
t ).

3 the control α∗ associated with (X
(0)
t ,Λ

(0)
t , µ

(0)
t ) is an optimal ψ-relaxed

control.
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Let ψ : [0, T ]→ [0,∞) be increasing§limr→0 ψ(r) = 0.

For r0 ∈ (0, T ), define a shift operator θr0 : D([0, T ];S)→ D([0, T ];S) by

(θr0λ)(t) = λ(t−r0)∨0, t ∈ [0, T ].

Moreover, θkr0λ(t) := λ(t−kr0)∨0 for λ ∈ D([0, T ];S), k ≥ 0.

m ≥ 1 is a fixed integer. A functional h : [0, T ]×Sm+1 →P(U) is said to

be in the class Υψ if for every i0, . . . , im ∈ S, t 7→ µ̃(t) := h(t, i0, . . . , im)

satisfies

wµ̃([t1, t2)) ≤ ψ(|t2 − t1|), t1, t2 ∈ [0, T ].
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Definition: For s ∈ [0, T ) and i ∈ S, a history-dependent control is a term

α = (Λt, µt) such that

(1) (Λt) is an Ft-adapted jumping process satisfying

P(Λt+δ = j|Λt = i, µt = µ) =

qij(µ)δ + o(δ), if i 6= j ,

1 + qii(µ)δ + o(δ), otherwise,

with initial value Λs = i for s ∈ [0, T ) and i ∈ S.

(2) There exists h ∈ Υψ such that

µt = h(t, θ0
r0Λ(t), . . . , θmr0Λ(t)).
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The collection of all history-dependent α with initial value (s, i) is denoted

by Πs,i. Let f : [0, T ]×S ×P(U)→ [0,∞), g : S → [0,∞) be two lower

semi-continuous functions. The expected cost for the history-dependent

control α ∈ Πs,i is defined by

J(s, i, α) = E
[ ∫ T

s
f(t,Λt, µt)dt+ g(ΛT )

]
,

and the value function is defined by

V (s, i) = inf
α∈Πs,i

J(s, i, α).

A history-dependent control α∗ ∈ Πs,i is said to be optimal, if

V (s, i) = J(s, i, α∗).
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1 µt = h(Λt) for some h : S → P(U). In this situation, α is corre-

sponding to the stationary randomized Markov policy studied by many

works.

2 µt = h(Λ(t−r0)∨0) for some h : S → P(U). Now the control policies

are purely determined by the jumping process with a positive delay. This

kind of controls is very natural to be used in the realistic application.
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Assumptions:

(A1) µ 7→ qij(µ) is continuous ∀ i, j ∈ S, and M := sup
i∈S

sup
µ∈P(U)

qi(µ) <∞.

(A2) There exists a compact function Φ : S → [1,∞), a compact set B0 ⊂
S, contants λ0 > 0 and κ0 ≥ 0 such that

QµΦ(i) :=
∑
j 6=i

qij(µ)
(
Φ(j)− Φ(i)

)
≤ λ0Φ(i) + κ01B0(i).

(A3) There exists a K ∈ N such that for every i ∈ S and µ ∈ P(U),

qij(µ) = 0, if |j − i| > K.

Theorem 4

Assume (A1)-(A3) hold. Then for every s ∈ [0, T ), i ∈ S, there exists an

optimal control α∗ ∈ Πs,i.

X.P. Guo, X.X. Huang, Y.H. Huang, Adv. Appl. Prob. 2015.
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Further work

Consider the following SDE:

dXt = b(Xt,Λt, µt)dt+ σ(Xt,Λt, µt)dBt,

where b : Rd×S×P(U)→ Rd, σ : Rd×S×P(U)→ Rd×d, and (Bt)t≥0

is a d-dimensional Ft-Brownian motion. Here (Λt)t≥0 is a continuous-time

jumping process on S satisfying

P(Λt+δ = j|Λt = i, Xt = x, νt = ν) =

qij(x, ν)δ + o(δ), if j 6= i ,

1 + qii(x, ν)δ + o(δ), otherwise,

provided δ > 0 for every x ∈ Rd, ν ∈P(U), i, j ∈ S.
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Thank You For Your Attention !

Email:shaojh@tju.edu.cn
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